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Characterization of a High-loaded Intercalate of pXylene with a Highly Siliceous Form 
of ZSM-5 by High Resolution 29Si Solid-state NMR Spectroscopy 
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High-resolution solid-state 29Si MAS NMR spectra of zeolite ZSM-5 with 4-8 molecules of sorbed p-xylene per unit 
cell reveal the presence of a ‘high-loaded’ phase for this system in which there are 24 T sites in the asymmetric unit; 
proton decoupling must be used to obtain good resolution in this phase and this is an indication for considerable 
dipolar interaction between the p-xylene protons and the 2 9 5  nuclei in the zeolite lattice, in contrast to the case of 
the ’low-loaded‘ form with two molecules per unit cell previously observed and described; thus, cross-polarization 
may be used to discriminate in favour of the ‘high-loaded’ phase. 

In the development of high-resolution 29Si solid state MAS 
NMR spectroscopy as a complementary technique to diffrac- 
tion studies for the investigation of zeolite structures,l 
considerable attention has been paid to zeolite ZSM-52 and 
the effects of temperature and sorbed organic moleculeslJ-~ 
on its structure. These latter systems are of interest because of 
the demonstrated selectivity of the adsorption process in terms 
of the size and shape of the organic sorbates.9 For example, 
p-xylene is easily and efficiently incorporated into the zeolite 
lattice, while the 0- and rn-isomers are not. Increasing the 
temperature has been shown to induce a change from the 
monoclinic form with 24 T-sites to an orthorhombic form with 

12 T-sites.9 A similar phase-change is produced by the 
sorption of p-xylene, the change being complete at approxi- 
mately two molecules per 96 T-atom unit cell (uc) and with 
high enough spectral resolution, the complete three-dimen- 
sional phase diagram of the combined effects of temperature 
and p-xylene concentration can be determined from NMR 
studies.7 Previous sorption studies indicate , however, that up 
to eight molecules of p-xylene per uc may be incorporated into 
the zeolite ZSM-5 latticelOJ1 and a recent complete single 
crystal X-ray diffraction study by van Koningsveld and 
co-workers12 indicates a structure of orthorhombic symmetry 
at high p-xylene loadings but with 24 T-sites. Previous NMR 
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Figure l(a). 29Si MAS NMR spectra of ZSM-5 with increasing 
concentration of p-xylene. The numbers indicate the numbers of 
p-xylene molecules sorbed per 96 T atom uc. (b) 29Si MAS NMR 
spectra with proton decoupling during acquisition of the same 
samples. 350 s Delay between pulses ensures the spectra are 
quantitative. (c) 29Si CPlMAS NMR spectra of the same samples. 

studies were characterized by line-broadening effects with no 
clear indication of the presence of a new phase.13-14 We have 
further explored the effect of higher loadings of p-xylene in 
ZSM-5 and in the present communication we report the 29Si 
NMR characterization of an additional ‘high-loaded’ phase for 
this system. 

Figure l(a) shows the effect of adding increasing amounts of 
p-xylene on the 29Si MAS spectra of a completely siliceous 
sample of ZSM-5 obtained without proton decoupling as in 
previous studies. From 2 to 8 molecules per unit cell were 
incorporated by direct addition and equilibrated at 100 “C in 
sealed tubes. The spectrum at 2 molecules per uc is identical to 
that previously described and indicates clearly that the 
asymmetric unit contains 12 T-atoms. As more p-xylene is 
added, there is a gradual broadening of the spectra, most 
noticeably in the bases of the resonances, consistent with 
previous investigations but no clear indication of the forma- 
tion of another species. Figure l(b) shows the 2% MAS 
spectra of the same series of samples but with proton 
decoupling used during acquisition. There is now substantial 
narrowing of the spectra and a second species is clearly 
observed at loadings greater than 4 molecules per uc as 
indicated by the vertical arrows. Its relative proportion 
gradually increases with increasing p-xylene concentration 
and it is the only species present at loadings greater than -7 
molecules per uc. The delay times used were such that the 
spectra may be considered to be quantitatively reliable. The 
spectrum of this new ‘high-loaded’ form clearly indicates that 
there has been a further change of symmetry. In addition, 
both phases clearly co-exist and the sharpness of all of the 
resonances indicates that both are highly ordered. The need 
for proton decoupling in order to obtain narrow resonances 
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Figure 2(a). Schematic representation of the asymmetric unit of 
‘high-loaded’ form of p-xylenelZSM-5 as indicated by the dashed 
lines. (b) 29Si MAS NMR spectrum with proton decoupling of the 
high-loaded form of p-xylenelZSM-5 with the assignment of the 
individual resonances. (c) The individual Lorenzian curves from a 
deconvolution of Figure 2(b). The numbers above the curves indicate 
the relative peak intensities. 

suggests that cross-polarization15 from the 1H nuclei in the 
p-xylene sorbates to the 29Si nuclei in the framework might be 
reasonably efficient for this ‘high-loaded’ structure in contrast 
to the situation for the ‘low-loaded’ orthorhombic phase 
where cross-polarization is very inefficient. Figure 1 (c) shows 
the 29Si CP MAS NMR spectra corresponding to the spectra in 
Figures l(a), (b). There is considerable enhancement both of 
the S : N and also of the relative intensities of the signals from 
the ‘high-loaded’ phase. These spectra show no evidence for 
exchange between the two forms and the discrimination in the 
cross-polarization process reflects a difference in the dynamic 
properties of the p-xylene sorbate molecules in the two 
phases. Figure 2(b) shows a 29Si MAS spectrum with proton 
decoupling of the sample loaded with 8 molecules of p-xylene 
per uc. A long relaxation delay (25 times the longest 29% Tl of 
-70 s) between successive scans was used to ensure quantita- 
tively reliable signal intensities. The deconvolution presented 
in Figure 2(c) clearly shows that the asymmetric unit contains 
24 T-sites. This is in agreement with the recent single-crystal 
X-ray study by van Koningsveld and co-workers12 who 
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concluded that the ZSM-5 structure at very high loadings of 
p-xylene was orthorhombic, space group P212121, with 24 
inequivalent T-sites. The postulated structure is shown in 
Figure 2(a). The complete assignment of T-sites and 29Si NMR 
resonances indicated in Figure 2(b), has been made on the 
basis of 2% 2D NMR investigations which will subsequently 
be reported in detail in a full paper.16 Further work in this area 
should now make it possible to fully describe the structures of 
the sorbate-lattice complexes and perhaps elucidate the 
details of the interactions between them. 
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